A Hierarchical a Posteriori Error Estimate for an Advection-diffusion-reaction Problem

نویسندگان

  • RODOLFO ARAYA
  • ABNER H. POZA
  • E. P. Stephan
چکیده

In this work we introduce a new a posteriori error estimate of hierarchical type for the advection-diffusion-reaction equation. We prove the equivalence between the energy norm of the error and our error estimate using an auxiliary linear problem for the residual and an easy way to prove inf–sup condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

A-posteriori Error Estimate for a Heterogeneous Multiscale Finite Element Method for Advection-diffusion Problems with Rapidly Oscillating Coefficients and Large Expected Drift

In this paper, we are engaged with an a-posteriori error estimate for a heterogeneous multiscale finite elements method (HMM) for solving linear advection-diffusion problems with rapidly oscillating coefficient functions and a large expected drift. The estimate is obtained in the L-norm and the achieved global error indicator can be localized with regard to the elements of the computational gri...

متن کامل

A Posteriori Energy-norm Error Estimates for Advection-diffusion Equations Approximated by Weighted Interior Penalty Methods

We propose and analyze a posteriori energy-norm error estimates for weighted interior penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations with heterogeneous and anisotropic diffusion. The weights, which play a key role in the analysis, depend on the diffusion tensor and are used to formulate the consistency terms in the discontinuous Galerkin method. The erro...

متن کامل

Robust a-posteriori estimator for advection-diffusion-reaction problems

We propose an almost-robust residual-based a-posteriori estimator for the advection-diffusion-reaction model problem. The theory is developed in the one-dimensional setting. The numerical error is measured with respect to a norm which was introduced by the author in 2005 and somehow plays the role that the energy norm has with respect to symmetric and coercive differential operators. In particu...

متن کامل

Maximum Norm A Posteriori Error Estimate for a 2D Singularly Perturbed Semilinear Reaction-Diffusion Problem

A singularly perturbed semilinear reaction-diffusion equation, posed in the unit square, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order maximum norm a posteriori error estimate that holds true uniformly in the small diffusion parameter. No mesh aspect ratio assumption is made. Numerical results are presented that support our theoretical estimate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005